Protein motif extraction with neuro-fuzzy optimization
نویسندگان
چکیده
منابع مشابه
Protein motif extraction with neuro-fuzzy optimization
MOTIVATION It is attempted to improve the speed and flexibility of protein motif identification. The proposed algorithm is able to extract both rigid and flexible protein motifs. RESULTS In this work, we present a new algorithm for extracting the consensus pattern, or motif, from a group of related protein sequences. This algorithm involves a statistical method to find short patterns with hig...
متن کاملUnsupervised feature extraction using neuro-fuzzy approach
The present article demonstrates a way of formulating a neuro-fuzzy approach for feature extraction under unsupervised training. A fuzzy feature evaluation index for a set of features is newly de8ned in terms of degree of similarity between two patterns in both the original and transformed feature spaces. A concept of 9exible membership function incorporating weighted distance is introduced for...
متن کاملNeuro-fuzzy Systems D1.3 Neuro-fuzzy algorithms
See the abstract for Chapter D1. Relatively early in neural network research there emerged an interest in analyzing and designing layered, feedforward networks augmented by some formalism stemming from the theory of fuzzy sets. One of B2.3 the first approaches was the fuzzification of the binary McCulloch–Pitts neuron (Lee and Lee 1975). B1.2 Then, several researchers looked at a typical feedfo...
متن کاملNeuro-Fuzzy Networks for Pattern Classification and Rule Extraction
In this paper, an experimental evaluation of the neurofuzzy models NEFCLASS and FuNN is conducted in real world pattern recognition applications. The models are investigated with respect to classification performance and the number of rules generated and compared to the traditional MLP network trained with backpropagation. The models NEFCLASS and FuNN are examined in benchmarking problems from ...
متن کاملEvolutionary Multiobjective Optimization for Fuzzy Knowledge Extraction
− A new trend in the design of fuzzy rulebased systems is the use of evolutionary multiobjective optimization (EMO) algorithms. This trend is observed in various areas in machine learning. EMO algorithms are often used to search for a number of Pareto-optimal non-linear systems with respect to their accuracy and complexity. In this paper, we first explain some basic concepts in multiobjective o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bioinformatics
سال: 2002
ISSN: 1367-4803,1460-2059
DOI: 10.1093/bioinformatics/18.8.1084